Racine carrée de matrices symétriques positives

L'objectif de cette séance est de démontrer le résultat qui suit.

Théorème 1

Pour tout $A \in \mathcal{S}_n^+(\mathbb{R})$, il existe une unique matrice $B \in \mathcal{S}_n^+(\mathbb{R})$ telle que $A = B^2$.

On note $B = \sqrt{A}$ et B est appelée la racine carrée de A.

De plus, si $A \in \mathcal{S}_n^{++}(\mathbb{R})$ alors $\sqrt{A} \in \mathcal{S}_n^{++}(\mathbb{R})$

Démonstration.

Existence: Comme A est symétrique et positive alors, d'après le théorème spectral, il existe $\lambda_1, \dots, \lambda_r \geqslant 0$, il existe $P \in \mathcal{O}_n(\mathbb{R})$ tel que $A = P^{-1} \operatorname{diag}(\lambda_1, \dots, \lambda_n) P$.

On pose $B = P^{-1} \operatorname{diag}(\sqrt{\lambda_1}, \cdots, \sqrt{\lambda_n}) P$.

B vérifie $B^2=A,\,B$ est symétrique car P est orthogonale et B est positive puisque symétrique à valeurs propres positives.

Unicité: Supposons donné C un second candidat.

Considérons Q un polynôme vérifiant, pour $1 \leq i \leq r$, $Q(\lambda_i) = \sqrt{\lambda_i}$. Ainsi

$$Q(A) = P^{-1}Q(\operatorname{diag}(\lambda_1, \dots, \lambda_n))P = P^{-1}\operatorname{diag}(\sqrt{\lambda_1}, \dots, \sqrt{\lambda_n})P = B.$$

Par ailleurs, comme $C^2 = A$ alors C et A commutent. Par conséquent, C commute avec tout polynôme en A et commute donc avec B.

Les matrices B et C étant diagonalisables (car symétriques) et commutant, elles sont donc codiagonalisables.

Ainsi, il existe ainsi $R \in GL_n(\mathbb{R}), D_1, D_2 \in D_n(\mathbb{R})$ tels que $R^{-1}BR = D_1$ et $R^{-1}CR = D_2$.

Or $D_1^2 = R^{-1}B^2R = R^{-1}AR = R^{-1}C^2R = D_2^2$. Les matrices D_1 et D_2 étant diagonales à coefficients positifs, on en déduit que $D_1 = D_2$. Ainsi B = C.

Remarque I

Ce résultat est faux pour des matrices symétriques et a fortiori pour des matrices carrées car l'existence de $B \in \mathcal{M}_n(\mathbb{R})$ telle que $A = B^2$ implique $\det(A) \geqslant 0$.

D'ailleurs, cette condition n'est pas non plus suffisante puisque A = diag(-1, -1) vérifie $\det(A) = 1 > 0$ alors qu'il n'existe aucune matrice $B \in \mathcal{M}_2(\mathbb{R})$ vérifiant $A = B^2$.

Remarque II

On peut montrer que dans C toute matrice inversible admet, au moins, une racine carrée (par exemple en utilisant la surjectivité de l'exponentielle).

En revanche, la matrice $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ ne possède aucune racine carrée.